内置工具
这些内置工具提供开箱即用的功能(例如Google搜索或代码执行器),为智能体赋予通用能力。例如,需要从网络获取信息的智能体可以直接使用google_search工具,无需额外配置。
使用方法
- 导入:从
agents.tools
模块导入所需工具 - 配置:初始化工具,按需提供必要参数
- 注册:将初始化后的工具添加到智能体的tools列表中
工具注册后,智能体会根据用户提示词和其指令决定是否调用该工具。框架会在智能体调用时自动处理工具的执行流程。
可用内置工具
Google搜索
google_search
工具允许智能体通过Google Search执行网络搜索。该工具兼容Gemini 2模型,可直接添加到智能体工具列表。
from google.adk.agents import Agent
from google.adk.runners import Runner
from google.adk.sessions import InMemorySessionService
from google.adk.tools import google_search
from google.genai import types
APP_NAME="google_search_agent"
USER_ID="user1234"
SESSION_ID="1234"
root_agent = Agent(
name="basic_search_agent",
model="gemini-2.0-flash",
description="Agent to answer questions using Google Search.",
instruction="I can answer your questions by searching the internet. Just ask me anything!",
# google_search is a pre-built tool which allows the agent to perform Google searches.
tools=[google_search]
)
# Session and Runner
session_service = InMemorySessionService()
session = session_service.create_session(app_name=APP_NAME, user_id=USER_ID, session_id=SESSION_ID)
runner = Runner(agent=root_agent, app_name=APP_NAME, session_service=session_service)
# Agent Interaction
def call_agent(query):
"""
Helper function to call the agent with a query.
"""
content = types.Content(role='user', parts=[types.Part(text=query)])
events = runner.run(user_id=USER_ID, session_id=SESSION_ID, new_message=content)
for event in events:
if event.is_final_response():
final_response = event.content.parts[0].text
print("Agent Response: ", final_response)
call_agent("what's the latest ai news?")
代码执行
built_in_code_execution
工具支持智能体执行代码(需配合Gemini 2模型使用),可实现计算、数据处理或运行小型脚本等任务。
import asyncio
from google.adk.agents import LlmAgent
from google.adk.runners import Runner
from google.adk.sessions import InMemorySessionService
from google.adk.tools import built_in_code_execution
from google.genai import types
AGENT_NAME="calculator_agent"
APP_NAME="calculator"
USER_ID="user1234"
SESSION_ID="session_code_exec_async"
GEMINI_MODEL = "gemini-2.0-flash"
# Agent Definition
code_agent = LlmAgent(
name=AGENT_NAME,
model=GEMINI_MODEL,
tools=[built_in_code_execution],
instruction="""You are a calculator agent.
When given a mathematical expression, write and execute Python code to calculate the result.
Return only the final numerical result as plain text, without markdown or code blocks.
""",
description="Executes Python code to perform calculations.",
)
# Session and Runner
session_service = InMemorySessionService()
session = session_service.create_session(app_name=APP_NAME, user_id=USER_ID, session_id=SESSION_ID)
runner = Runner(agent=code_agent, app_name=APP_NAME, session_service=session_service)
# Agent Interaction (Async)
async def call_agent_async(query):
content = types.Content(role='user', parts=[types.Part(text=query)])
print(f"\n--- Running Query: {query} ---")
final_response_text = "No final text response captured."
try:
# Use run_async
async for event in runner.run_async(user_id=USER_ID, session_id=SESSION_ID, new_message=content):
print(f"Event ID: {event.id}, Author: {event.author}")
# --- Check for specific parts FIRST ---
has_specific_part = False
if event.content and event.content.parts:
for part in event.content.parts: # Iterate through all parts
if part.executable_code:
# Access the actual code string via .code
print(f" Debug: Agent generated code:\n```python\n{part.executable_code.code}\n```")
has_specific_part = True
elif part.code_execution_result:
# Access outcome and output correctly
print(f" Debug: Code Execution Result: {part.code_execution_result.outcome} - Output:\n{part.code_execution_result.output}")
has_specific_part = True
# Also print any text parts found in any event for debugging
elif part.text and not part.text.isspace():
print(f" Text: '{part.text.strip()}'")
# Do not set has_specific_part=True here, as we want the final response logic below
# --- Check for final response AFTER specific parts ---
# Only consider it final if it doesn't have the specific code parts we just handled
if not has_specific_part and event.is_final_response():
if event.content and event.content.parts and event.content.parts[0].text:
final_response_text = event.content.parts[0].text.strip()
print(f"==> Final Agent Response: {final_response_text}")
else:
print("==> Final Agent Response: [No text content in final event]")
except Exception as e:
print(f"ERROR during agent run: {e}")
print("-" * 30)
# Main async function to run the examples
async def main():
await call_agent_async("Calculate the value of (5 + 7) * 3")
await call_agent_async("What is 10 factorial?")
# Execute the main async function
try:
asyncio.run(main())
except RuntimeError as e:
# Handle specific error when running asyncio.run in an already running loop (like Jupyter/Colab)
if "cannot be called from a running event loop" in str(e):
print("\nRunning in an existing event loop (like Colab/Jupyter).")
print("Please run `await main()` in a notebook cell instead.")
# If in an interactive environment like a notebook, you might need to run:
# await main()
else:
raise e # Re-raise other runtime errors
Vertex AI搜索
vertex_ai_search_tool
工具基于Google Cloud的Vertex AI Search技术,支持在私有配置的数据存储(如内部文档、公司政策、知识库)中进行检索。使用此内置工具需在配置时提供特定数据存储ID。
import asyncio
from google.adk.agents import LlmAgent
from google.adk.runners import Runner
from google.adk.sessions import InMemorySessionService
from google.genai import types
from google.adk.tools import VertexAiSearchTool
# Replace with your actual Vertex AI Search Datastore ID
# Format: projects/<PROJECT_ID>/locations/<LOCATION>/collections/default_collection/dataStores/<DATASTORE_ID>
# e.g., "projects/12345/locations/us-central1/collections/default_collection/dataStores/my-datastore-123"
YOUR_DATASTORE_ID = "YOUR_DATASTORE_ID_HERE"
# Constants
APP_NAME_VSEARCH = "vertex_search_app"
USER_ID_VSEARCH = "user_vsearch_1"
SESSION_ID_VSEARCH = "session_vsearch_1"
AGENT_NAME_VSEARCH = "doc_qa_agent"
GEMINI_2_FLASH = "gemini-2.0-flash"
# Tool Instantiation
# You MUST provide your datastore ID here.
vertex_search_tool = VertexAiSearchTool(data_store_id=YOUR_DATASTORE_ID)
# Agent Definition
doc_qa_agent = LlmAgent(
name=AGENT_NAME_VSEARCH,
model=GEMINI_2_FLASH, # Requires Gemini model
tools=[vertex_search_tool],
instruction=f"""You are a helpful assistant that answers questions based on information found in the document store: {YOUR_DATASTORE_ID}.
Use the search tool to find relevant information before answering.
If the answer isn't in the documents, say that you couldn't find the information.
""",
description="Answers questions using a specific Vertex AI Search datastore.",
)
# Session and Runner Setup
session_service_vsearch = InMemorySessionService()
runner_vsearch = Runner(
agent=doc_qa_agent, app_name=APP_NAME_VSEARCH, session_service=session_service_vsearch
)
session_vsearch = session_service_vsearch.create_session(
app_name=APP_NAME_VSEARCH, user_id=USER_ID_VSEARCH, session_id=SESSION_ID_VSEARCH
)
# Agent Interaction Function
async def call_vsearch_agent_async(query):
print("\n--- Running Vertex AI Search Agent ---")
print(f"Query: {query}")
if "YOUR_DATASTORE_ID_HERE" in YOUR_DATASTORE_ID:
print("Skipping execution: Please replace YOUR_DATASTORE_ID_HERE with your actual datastore ID.")
print("-" * 30)
return
content = types.Content(role='user', parts=[types.Part(text=query)])
final_response_text = "No response received."
try:
async for event in runner_vsearch.run_async(
user_id=USER_ID_VSEARCH, session_id=SESSION_ID_VSEARCH, new_message=content
):
# Like Google Search, results are often embedded in the model's response.
if event.is_final_response() and event.content and event.content.parts:
final_response_text = event.content.parts[0].text.strip()
print(f"Agent Response: {final_response_text}")
# You can inspect event.grounding_metadata for source citations
if event.grounding_metadata:
print(f" (Grounding metadata found with {len(event.grounding_metadata.grounding_attributions)} attributions)")
except Exception as e:
print(f"An error occurred: {e}")
print("Ensure your datastore ID is correct and the service account has permissions.")
print("-" * 30)
# --- Run Example ---
async def run_vsearch_example():
# Replace with a question relevant to YOUR datastore content
await call_vsearch_agent_async("Summarize the main points about the Q2 strategy document.")
await call_vsearch_agent_async("What safety procedures are mentioned for lab X?")
# Execute the example
# await run_vsearch_example()
# Running locally due to potential colab asyncio issues with multiple awaits
try:
asyncio.run(run_vsearch_example())
except RuntimeError as e:
if "cannot be called from a running event loop" in str(e):
print("Skipping execution in running event loop (like Colab/Jupyter). Run locally.")
else:
raise e
组合使用内置工具
以下代码示例演示如何组合多个内置工具,或通过多智能体模式将内置工具与其他工具配合使用:
from google.adk.tools import agent_tool
from google.adk.agents import Agent
from google.adk.tools import google_search, built_in_code_execution
search_agent = Agent(
model='gemini-2.0-flash',
name='SearchAgent',
instruction="""
You're a specialist in Google Search
""",
tools=[google_search],
)
coding_agent = Agent(
model='gemini-2.0-flash',
name='CodeAgent',
instruction="""
You're a specialist in Code Execution
""",
tools=[built_in_code_execution],
)
root_agent = Agent(
name="RootAgent",
model="gemini-2.0-flash",
description="Root Agent",
tools=[agent_tool.AgentTool(agent=search_agent), agent_tool.AgentTool(agent=coding_agent)],
)
使用限制
Warning
当前每个根智能体或独立智能体仅支持一个内置工具
例如以下在根智能体(或独立智能体)中使用两个及以上内置工具的方式暂不支持:
root_agent = Agent(
name="RootAgent",
model="gemini-2.0-flash",
description="Root Agent",
tools=[built_in_code_execution, custom_function],
)
Warning
内置工具无法在子智能体中使用
例如以下在子智能体中使用内置工具的方式暂不支持:
search_agent = Agent(
model='gemini-2.0-flash',
name='SearchAgent',
instruction="""
You're a specialist in Google Search
""",
tools=[google_search],
)
coding_agent = Agent(
model='gemini-2.0-flash',
name='CodeAgent',
instruction="""
You're a specialist in Code Execution
""",
tools=[built_in_code_execution],
)
root_agent = Agent(
name="RootAgent",
model="gemini-2.0-flash",
description="Root Agent",
sub_agents=[
search_agent,
coding_agent
],
)